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Critical and oscillatory behavior of a system of smart preys and predators
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It is shown that a system of smart preys and predators exhibits irreversible phase transitions between a
regime of prey-predator coexistence and an state where predator extinction is observed. Within the coexistence
regime, the system exhibits a transition between a regime where the densities of species remain constant and
another with self-sustained oscillations, respectively. This transition is located by means of a combined treat-
ment involving finite-size scaling and Fourier transforms. Furthermore, it is shown that the transition can be
rationalized in terms of the standard percolation theory. The existence of an oscillatory regime in the thermo-
dynamic limit, which is in contrast to previous findings of Boccaraet al. @Phys. Rev. E50, 4531~1994!#, may
be due to subtle differences between the studied models.
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I. INTRODUCTION

The understanding of far from equilibrium irreversib
dynamical systems with many degrees of freedom is a to
of great interest in many branches of science such as Phy
Biology, Sociology, Economy, Chemistry, Ecology, e
Within this context, very recently, the study of cooperati
phenomena in multicomponent systems of biological a
ecological interest has been addressed by physicists u
powerful and well-established techniques already develo
in the fields of condensed matter physics, statistical phys
and computational physics@1–3#.

Some of these studies were aimed to describe, e.g.,
formation and development of complex spatiotemporal str
tures involving cell cultures@4#, living organisms ranging
from primitive ones such as bacteria@5#, fungi colonies@6#,
and swarms of insects to more sophisticated species suc
herds of wildebeest, schools of fish, flocks of birds@7#, etc.
Within this context the classical Lotka-Volterra~LV ! @8# ap-
proach is the archetype model for the description of a tw
species competition system such as in the case of preys
predators. The main result of the standard mean-field
proach for the LV model is the occurrence of oscillato
behavior of population densities with a well-determined p
riod. Natural populations of plants and animals frequen
exhibit various patterns of fluctuations about long-term pe
ods @9#. Some species have roughly a constant popula
density while others exhibit large fluctuations with cyclic
quasicyclic behavior. These deviations from the mean-fi
predictions may be due to the stochastic nature of the sys
or, on the other hand, could correspond to chaotic behav
Very recently, it has been shown that adding a noise term
the equation of a symmetric two-species composition
model, one could drastically change its behavior. An int
esting effect is, e.g., the observation of stochastic resona
@10#.
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In the present work we study a lattice gas model fo
prey-predator system with smart pursuit and escape, whic
a variant of the cellular-automata early proposed by Bocc
et al. @11#. The main finding of the present work is the o
currence of a transition between a regime where the den
of species remains constant and another where it exhibit s
sustained oscillations, respectively. In order to identify t
transition we have developed a combined treatment invo
ing finite-size scaling and Fourier analysis. It is also sho
that the transition can be rationalized in terms of the stand
percolation theory.

II. DESCRIPTION OF THE MODEL

The prey-predator model with smart pursuit and evas
is defined as follows: a lattice site can be either empty
occupied by a prey or a predator, respectively. Double oc
pancy of sites is forbidden. The system evolves accordin
consecutive cycles:~i! coexistence of species and~ii ! escape-
pursuit dynamics.

The rules of coexistence are as follows.~a! Preys give an
offspring occupying an empty next neighbor site with pro
ability BH ~birth probability of preys! in case of absence o
predators within theirVH ~visual range of preys!. ~b! Preda-
tors can eat a prey that exist in theirM P ~movement range of
predators! with probability DH ~death probability of preys!.
~c! Predators that previously have eaten a prey can give
offspring in the site occupied previously by the eaten pr
with probability BP ~birth probability of predators!. ~d!
Predators can suddenly die with probabilityDP ~death prob-
ability of predators!.

In order to formulate the rules for a smart escape-pur
process we have to note that predators~preys! can feel the
presence of an attractive~repulsive! potential gP,H (gH,P)
generated by the density of preys~predators! in their VP
(VH) respectively. Furthermore, they are able to calculate
gradient of this potential in theirM P (MH), namely,

ga,b~XW ,t !5 (
XW 8e[VaùEb(t)]

uXW 2XW 8u21, ~1!
©2001 The American Physical Society07-1
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FIG. 1. ~a! Plot of the critical points of the
irreversible phase transition between the coex
ence regime of prey and predators and the
sorbing state with predator extinction. ‘‘Full line
’’ mean-field results obtained using Eq.~5!. n

results from Monte Carlo epidemic studie
‘‘Dashed line’’ critical curve at the fixed point
~FP! - oscillatory behavior~OB! transition ob-
tained by means of Monte Carlo simulation
~mean-field calculations!, respectively.~b! and
~c! are plots of predator density versus prey de
sity showing the FP and OB regimes, respe
tively. Densities are measured in units of numb
of species per unit area.
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where XW points to the possible next selected position,XW 8
runs through the subspace occupied by the speciesb inside
the visual space of the speciesa, Va is the visual range of the
speciesa, andEb is the total space occupied by the speciesb.

Based on these definitions we formulate the esca
pursuit rules as follows.

~a! Preys move into an empty site in the direction of t
calculated gradient, the new selected positionXW * minimizes
the potentialgH,P in MH , XW * 5Arg MinXW e[ M PùE0(t)]gH,P

(XW ,t).
~b! Predators move into an empty site in the direction

the gradient, the new selected positionXW * maximizes the
potential gP,H in M P , XW * 5Arg MaxXW e[ M PùE0(t)]gP,H

(XW ,t).

In this context, if we define the spatiotemporal density
the species ‘‘s’’ as

rs~XW ,t !5H 1

Ns~ t !
, if XW eEs

0, otherwise,

~2!

then ga,b(XW ,t)5(XW 8eVa
uXW 2XW 8u21rb(XW 8,t) and the exis-

tence of a force inversely proportional to the squared d
tance becomes evident. It should be noted that this kind
repulsion-attraction forces between animals have alre
been used for the theoretical study of the collective mot
of self-driven individuals@12#.

We have restricted ourselves to investigate the dep
dence of the system on the predator birth (BP) and death
(DP) probabilities, respectively. The remaining paramet
are kept constant, namely,M P5VP5VH51. The model is
studied by means of Monte Carlo simulations on the squ
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lattice of sideL, measured in lattice units~L.U.! with peri-
odic boundary conditions. During a Monte Carlo time st
~mcs! all sites of the sample are update once on average.
model is also studied using a set of mean-field equations
this case the time is measured in arbitrary units.

III. RESULT AND DISCUSSION

Starting from a random distribution of prey and predato
the system may evolve towards two different states or pha
@see Fig. 1~a!#: i! For DP→0 ~but DP.0) andBP→1 ~but
BP,1), the final state of the system is a stationary regi
with coexistence of preys and predators@13#; ii ! For DP
→0.5 andBP→0 ~but BP.0), predators die out and surviv
ing preys cover the whole lattice. This phase is an absorb
state where the system becomes irreversibly trapped s
the spontaneous birth of predators is not allowed. At
boundary between these two phases a critical curve in
@DP ,BP# plane can be located.

It is well known that the determination of the critica
points and critical exponents characterizing irreversi
phase transitions~IPT’s! using simulations of the stationar
state in finite lattices is heavily hindered by fluctuations
fects that may irreversibly drive the system into the abso
ing state. In order to overcome this difficulty we have pe
formed standard epidemic studies@14#. Starting from a
configuration very close to the absorbing state, namely
lattice covered by preys except by one predator in the ce
of the sample, the dynamics of the predator’s spreadin
followed as a function of time measuring~i! the average
number of predatorsNP(t), ~ii ! the survival probability of
predators, namely, the probability that at timet there is still a
predator alive,PP(t), and ~iii ! the average spreading dis
tanceR2(t). At criticality, these quantities obey power la
behavior, i.e.,NP(t);th, PP(t);t2d, andR2(t);tz. Using
this technique we have precisely determined the criti
7-2
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CRITICAL AND OSCILLATORY BEHAVIOR OF A . . . PHYSICAL REVIEW E63 061907
points shown in Fig. 1~a! and for the critical exponents w
get h'0.2160.02, d'0.4560.02, andz'1.1260.02. So,
the second order IPT’s between the coexistence regime
the absorbing state can be placed within the universa
class of directed percolation, withh50.21460.008, d
'0.46060.006, andz'1.13460.004@14#.

The mean-field equations for the system can be deri
considering all events causing changes in the population
sity of both species. So, one has

]rP

]t
5rP~B2D !, ~3!

]rH

]t
5rH$A2~B1C!@12~12rP!(2M P11)221#%, ~4!

whererP andrH are the predator and prey densities, resp
tively. A5BH(12DP)(2VH11)221@12(rP1rH)8# is the
birth probability of a prey in a neighboring empty site@15#,
B5(12DP)BPDH@12(12rH)(2M P11)221# is the probabil-
ity of a predator to catch a prey and have an offspring in
site previously occupied by the prey,C5(12DP)(1
2BP)DH@12(12rH)(2M P11)221# is the probability of a
predator to catch a prey, andD5DP is simply the dying
probability of a predator. Solving Eqs.~3! and~4!, requiring
]rP /]t5]rH /]t50 at the critical edge we get

BP* 5
DP

DH~12DP!
. ~5!

The location of the critical edge using Eq.~5! is also
shown in Fig. 1~a! for the sake of comparison with Mont
Carlo results. The observed agreement is~surprisingly! ex-
cellent considering that in most cases the mean-field
proach fails close to second-order transitions. This ag
ment could be due to the fact that the high density of pr
close to the critical point almost inhibits the displacement
predators.

Solving numerically the set of mean-field equations
observed that close to the IPT’s critical edge and after a s
transient period, the system reaches a constant densi
both preys and predators, as is shown in Fig. 2. So, plot
rP versusrH show closed loops ending in a fixed point~FP!
as is shown in Fig. 1~b!. Within the FP regime@see Fig. 1~a!#
the density of predators~preys! steadily increases~decreases!
upon increasingBP . This behavior is also observed in Mon
Carlo simulations. However, it should be noticed that with
this FP regime preys are the majority species and cluster
preys always percolate across both directions of the sam
as, e.g., is shown in the snapshot configuration of Fig
Moving away from criticality, whenBP is further increased
the system starts to exhibit a self-sustained oscillatory beh
ior ~OB! with a well-defined period~see Fig. 1!. Therefore a
curve can be drawn at the boundary between the FP and
as is shown in Fig. 1~a!.

The location of the boundary between FP and OB regim
using Monte Carlo simulations deserves a careful task
fact, due to the stochastic nature of the simulation proced
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one always observes a quasiperiodical signal as is show
Fig. 4. This quasioscillatory behavior could be, on the o
hand, a finite-size effect whose amplitudeAP vanishes in the
thermodynamic limit or, on the other hand, simply noise.
order to clarify these points we have first performed a fin
size analysis. It is found that the amplitude of the oscillatio
behaves asAP5A`1BL2g whereB is a constant,A` is the
amplitude in the thermodynamic limit, andg is an exponent.
As it is shown in the inset of Fig. 4, it is found that close
the critical edge,AP vanishes withg54/3 (A`;0) while,
far from criticality, one hasA` positive with the same value
of g. So, our finite size analysis of the Monte Carlo da
allows us to distinguish between the FP and OB regimes
agreement with the mean-field results. Furthermore, we h
performed a Fourier analysis of the temporal signals a
shown in Fig. 5. Within the FP regime we observed a p
‘‘1/f ’’ white noise, but crossing to the OB state the spect
shows a peak corresponding to the characteristic freque
of the systemf * .331022 mcs21. Fourier analysis of time
series measured using samples of different size (100 L
<L<1000L.U.) shows thatf * is independent ofL, so it can
truly be identified as the natural frequency of the system

Snapshot configurations of the system within the OB
gime are quite different from those characteristic of the
regime already shown in Fig. 2. In fact, as is shown in Fig
when the density of preys is maximum there is at leas
‘‘percolating cluster ’’ of preys spanning the whole lattic
@see, e.g., Fig. 6~a!# while small ‘‘colonies ’’ of predators are
placed almost at random. However, this configuration fav
the reproduction of predators that causes the density of p
to decrease@Fig. 6~b!#. Here, small~nonpercolating! clusters
of preys are surrounded by predators. So, the OB can
thought as a sequence of alternating percolation events.
details on the percolation theory see, e.g.,@16#.

In order to perform a quantitative analysis of the tran
tion we have evaluated the percolation probability (Ppr)
measured for clusters of preys as a function ofBP keeping
DP50.25, BH50.5, andDH50.99 as is shown in Fig. 7
Inside the FP regime one hasPpr51 and the population of

FIG. 2. Plots of the density of prey and predators, measure
units of number of species per unit area, versus time, measure
arbitrary units, as obtained solving the mean-field equations
DP50.25 andBP50.45. The attainment of the FP regime after
short transient regime can be observed.
7-3
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FIG. 3. Snapshot configuration of the syste
taken within the FP regime forDP50.25 and
BP50.45. Predators are shown as black poin
and preys are gray. Within this regime the bigge
cluster of preys always percolates across both
rections of the sample.
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both prey and predators is almost constant. However, jus
the onset of the OB regime one observes for the first t
no-percolating clusters of preys. From Fig. 7 it follows th
increasing the lattice size, thePpr vs BP plots approach a
stepped function with a sharp edge close toBP;0.5. In or-
der to determine the critical percolation edge in the therm

FIG. 4. Plot of the predator density, measured in unit of num
of predators per unit area, versus time, measured in mcs, as
tained from Monte Carlo simulations. ‘‘Full line ’’DP50.25, BP

50.4 ~noise in the fixed point regime!, ‘‘dashed line ’’ DP50.25,
BP50.6 ~oscillatory regime!. The inset shows plots of the ampl
tude of the oscillations of predator density versusL2g (g54/3),
where L is measured in L.U.d DP50.25 andBP50.4, h DP

50.25 andBP50.7.
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dynamic limit, let us first defineL-dependent threshold
BP(L) as a fixed point such thatPpr$BP(L)%[const. Using
this method@16# we have evaluated three sets ofL-dependent
edges taking three values of the constant, namely, 0.2,
and 0.6. According to the finite-size scaling theory@16#,

BP~L !5BP`1ML21/n, ~6!

whereBP` is the percolation threshold in the thermodynam

r
b-

FIG. 5. Fourier spectra of temporal series of the prey den
obtained for different values ofBP. The amplitude is measured i
arbitrary units and the frequency in mcs21. The vertical full line
shows the location of the natural frequencyf * .0.03 mcs21. The
dashed line in~a! has slope ‘‘-1 ,’’ i.e., 1/f noise, and has been
drawn for the sake of comparison.
7-4
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CRITICAL AND OSCILLATORY BEHAVIOR OF A . . . PHYSICAL REVIEW E63 061907
FIG. 6. ~a! and ~b! are snapshot configurations of the syste
taken within the oscillatory regime. Predators are shown as b
points and preys are grey. Notice that~a! and ~b! correspond to
percolating and nonpercolating stages, respectively. More deta
the text.

FIG. 7. Plots of the percolation probability (Ppr) versusBP for
lattices of different sized L5100 L.U., h L5200 L.U., , L
5400 L.U.,L L5800 L.U. In order to guide the edges, data we
fitted using a Boltzmann sigmoid~full line!. The dashed line a
BP50.525 shows the location of the critical edge.
06190
limit, M is a constant, andn is the correlation length expo
nent. The best fit of the data~Fig. 8!, which is obtained
taking n5 4

3 as in the standard percolation~SP! problem in
two dimensions@16#, givesBP`>0.52560.005. Just at criti-
cality, prey density is close torH.0.47. This figure is
smaller than the critical occupation probability of the S
model, namely,pc>0.592 75, suggesting the existence
‘‘attractive’’ interactions between preys that may be a co
sequence of both, the operation of the smart escape rule
the fact that the prey’s offsprings are born at neare
neighbor sites. The fractal dimension of the incipient per
lating clusterDF is given by

m} l DF, ~7!

where m is the ‘‘mass’’~number of preys! within a charac-
teristic length l~measured in L.U.!. Using the box counting
method we obtainDF>1.9060.02~see the inset in Fig. 8! in
excellent agreement with the fractal dimension of the
incipient cluster, namely,DF>1.89 @16#. Considering the
scaling relationship@16# DF5d2b/n, whereb is the order
parameter critical exponent, we conclude that the percola
transition associated with the FP-OB transition belongs
the same universality class as the SP model.

It should be noticed that our claim of the occurrence of
OB in the thermodynamic limit is in contrast to the concl
sions stated by Boccaraet al. @11# using a similar prey-
predator model. In fact, they have found that the oscillat
regime is restricted to finite samples only. The different b
havior observed may be due to the fact that Boccaraet al.
@11# have used a cellular automata update rule for the
namics of coexistence of species while the escape-pu
dynamics is updated sequentially. In contrast, in the pres
work both types of dynamics have been performed sequ

k

in

FIG. 8. Plot of theL-dependent critical thresholdsBP(L) versus
L21/n with n54/3, whereL is measured in LU. Data evaluated a
d Ppr50.2, h Ppr50.4, andL Ppr50.6. The inset shows a plo
of the number of preys ‘‘m ’’ versus ‘‘l’’ —measured in L.U.—
obtained at criticality, which gives a straight line with slopeDF

51.90 @see Eq.~7!#. More details in the text.
7-5
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tially. It is known that in some cases both types of updat
display essentially the same physical properties, while
other examples, they lead to different results as in the pre
work.

Finally, it is worth discussing the differences between
present model with smart escape-pursuit rules~SEP! and a
simpler one that only considers random diffusion~RD!.
From the qualitative point of view the major difference aris
on the structure of the spatial patterns generated. Let us
consider an epidemic study, suitable for the location of
irreversible transition between prey extinction and coex
ence of both species. In this case few predators are rele
in the center of a lattice fully covered by preys. It is observ
that for SEP, the predators tend to form a ring with a we
defined predator-prey interface. The ring propagates
wards keeping empty sites inside it and the interactions
tween species is favored. In contrast, for RD the ring
predators is much fuzzy and preys can escape crossin
Consequently, the interface between preys and predato
the expanding ring is not well defined as in the previo
case. The probability of predators to catch a prey decre
and the effective probability for the predators to die increa
due to smaller reproduction chances. This qualitative pict
has quantitative consequences since the location of
extinction-coexistence transition becomes shifted tow
larger values ofBP , e.g., we getBP

E-C.0.36 and BP
E-C

.0.38 for the SEP and the RD cases, respectively. Con
ering the transition between the FP and the OB states,
observed patterns are consistent with the previous dis
sion. Compact clusters of preys surrounded by predators
observed for SEP. This configurations favor the pre
s
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predator interaction. However, for RD the interface betwe
clusters of different species is not so well defined and
interaction is less effective. Due to this effect, for the case
RD the onset of the OB takes place at lower values ofBP ,
e.g., we getBP

FP-OB.0.50 andBP
FP-OB.0.47 for the SEP and

the RD cases, respectively. Summing up, the overall effec
RD is to reduce the width of the FP regime that occurs i
narrow interval ofBP values. It should also be mentione
that well inside the coexistence regime, the introduction
an error when selecting the escape-pursuit direction ge
ates the onset of spiral patterns that currently are under s
@17#.

IV. CONCLUSIONS

In summary, we have studied a model of competiti
population dynamic. The system displays absorbing sta
and active regimes. The former can be either nonequilibri
steady states or oscillatory states, respectively. The ons
oscillations at global scale is triggered by a dynamic per
lation process. It is worth mentioning that there exist num
ous systems that can be described in terms of compet
and cooperative interactions. So, our study is not simply
stricted to population dynamics but can be extended t
variety of situations emerging from different scientific field
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@5# A. Czirók et al., Phys. Rev. E54, 1791~1996!.
@6# J. M. Lopez and H. J. Jensen, Phys. Rev. Lett.81, 1734~1998!.
@7# T. Vicseket al., Phys. Rev. Lett.75, 1226~1995!; E. Albano,

ibid. 77, 2129 ~1996!; J. Toner and Y. Tu, Phys. Rev. E58,
4828 ~1998!.

@8# A. J. Lotka, Proc. Natl. Acad. Sci. U.S.A.6, 410 ~1920!; A. J.
Lotka, Elements of Physical Biology~Willams and Wilkins,
Baltimore, 1925!; V. Volterra, Atti Accad. Naz. Lincei, Cl.
Sci. Fis., Mat. Nat., Rend.6, 31 ~1931!.

@9# I. R. Epstein and J. A. Projman,An Introduction to Nonlinear
Chemical Dynamics~Editorial Oxford University Press, New
York, 1998!; see, for example, Fig. 1.3.
@10# J. Vilar and R. Sole´, Phys. Rev. Lett.80, 4099~1998!.
@11# N. Boccaraet al., Phys. Rev. E50, 4531~1994!.
@12# N. Shimoyama, K. Sugawava, T. Mizugichi, Y. Hahakana, a

M. Sano, Phys. Rev. Lett.76, 3870~1996!.
@13# Notice that the caseDP50 is absorbing since predators wi

ultimately eat all preys.
@14# P. Grassberger and A. de la Torre, Ann. Phys.~N.Y.! 122, 373

~1979!; P. Grasberger, J. Phys. A22, 3673~1989!.
@15# For example, the termA is evaluated considering the birt

probability of a prey (BH), the probability of absence of preda

tors in the prey’s visual neighborhood (12DP)(2M P11)221 and
the factor@12(rP1rH)8#, which is the probability to have
‘‘at least’’ an empty site at the nearest and next-nearest ne
bor sites~8 in total, which gives the exponent!.

@16# D. Stauffer and A. Aharony,Introduction to Percolation
Theory, 2nd ed.~Taylor & Francis, London, 1992!.

@17# A. F. Rozenfeld, J. L. Gruver, E. V. Albano, and S. Havl
~unpublished!.
7-6


